# Measuring Parameters for Microlensing Planetary Systems.

Scott Gaudi
Matthew Penny
(OSU)

# WFIRST Microlensing Survey.



## Microlensing Survey Dataset.

#### Properties.

- ~3 sq. deg.
- ~432 days.
- ~80% of the area will have 2 million seconds of integration time.
- ~100 million stars down to J<22, with ~40,000 measurements per star (~10% in bluer filter),  $N^{-1/2} = 1/200$
- ~20 billion photons detected for a J=20 star.
- Deepest IR image ever?

### Extraordinarily rich dataset.

- Measure parallaxes to <10% and proper motions to <300 m/s (<0.3%) for 10<sup>8</sup> bulge and disk stars.
  - Larger than GAIA.
- Detect dark companions to disk and bulge stars.
- Find >10<sup>5</sup> transiting planets (Bennett & Rhie 2002).
- Detect 5000 KBOs down to 10km, with 1% uncertainties on the orbital parameters (Gould 2014).
- Exquisite characterization of the detector.
- 55

# Microlensing Basics.



# Angular Einstein Ring.

$$\theta_E = \sqrt{\kappa M \pi_{rel}}$$



Lens mass

M

 Relative Lens-Source Parallax

$$\pi_{rel} = \pi_l - \pi_s = \frac{AU}{D_l} - \frac{AU}{D_s}$$

Constant

$$\kappa = \frac{4G}{c^2 AU} = 8 \, \text{mas/M}_{\odot}$$

# Rings vs. Images.



# Microlensing Events.



# Detecting Planets.





#### Basic Measurements.



Primary Event:  $(t_o, u_o, t_E)$ 

$$t_E = \frac{\theta_E}{\mu_{rel}} = f(M, D_l, \mu_{rel})$$

Planetary Deviation:  $(t_p, t_c, \Delta A)$ 

$$q = \frac{m}{M} \sim \left(\frac{t_p}{t_E}\right)^2$$

$$s = \frac{r_{\perp}}{\theta_E D_l} = f(t_0, t_c, t_E)$$



# Angular Einstein Ring Radius.

- Need an angular ruler.
  - Finite size of source star  $\rho_* = \theta_* / \theta_F$
  - $-\theta_*$  from source flux + color
  - Most planetary events.
  - Need measurements in two filters during the event.

$$\theta_E = f(M, D_l)$$





#### Lens Flux.

- Need to measure the lens flux.
  - Have to resolve out unrelated stars blended with lens and source.
  - Subtract source flux from sum of lens+source.
  - Remaining flux is due to the lens.
  - Need angular resolution better than ~0.3".

$$F_{l,\lambda} = \frac{L_{\lambda}}{4\pi D_l^2} = f(M_l, D_l)$$



The field of microlensing event MACHO 96-BLG-5 (Bennett & Rhie 2002)

#### Microlens Parallax.

- Use the Earth's orbit as a ruler.
  - Microlens parallax is a vector.
  - Direction of relative lens-source proper motion.
  - Measure deviations from a rectilinear, uniform trajectory.
  - Parallax asymmetry gives one component.
  - Precise lightcurves for most events give one component of parallax.

$$\pi_E = \frac{\pi_{rel}}{\theta_E} = f(M, D_l)$$



(Gould & Horne 2013)

## Other possible measurements.

Additional parallax measurements.

• Directly measuring relative lens-source proper motion.

Astrometric microlensing.

Orbital motion.

# Parallax, continued.

- Long timescale events.
  - Both components.
- Geosynchronous parallax (Gould 2013)
  - High magnification events.
- L2-Earth parallax (Yee 2013).
  - JWST+WFIRST Geo, or Earth+WFIRST L2
  - Both components.
  - High-magnification events.
  - Requires alerts or dedicated surveys.



# Directly measuring $\mu_{rel}$ .

#### For luminous lenses:

- Direct resolution of lens and source.
  - High  $\mu_{rel}$  events.
  - Precursor observations now!
- Image elongation.
- Color-dependent centroid shift.

#### Useful for:

- Testing for companions to lens or source.
- Events where the finite source size is not measured.





## Astrometric microlensing.

- Centroid shift of source.
  - Size is proportional to  $heta_{\!\scriptscriptstyle
    m E}$
  - Orientation is in the direction of  $\mu_{rel}$  and  $\pi_{\it F}$
  - Combined with parallax asymmetry, get complete solution.
- Can be used to measure masses of isolated remnants and brown dwarfs.
- Very small shift.
  - Worry about systematics.
  - Can be vetted using direct measurement of  $\mu_{\text{rel}}$  from precursor observations.



### Summary.

- For planetary deviations with luminous lenses, will get (model dependent)
  masses.
  - Need two filters during the event.
  - Need high resolution.
- For planetary deviations with non-luminous lenses, will get partial information.
  - Need two filters during the event.
  - Need precise light curves.
- There are a variety of additional measurements we can make for a subset of events.
  - Additional information (orbits).
  - Redundancy to check solutions.
  - Strict control of systematics (photometry + astrometry).
  - ToO and/or Alerts.
  - Precursor observations.

# Implications?

- Potentially very rich dataset, for microlensing and non-microlensing science, as well as for calibration of the detector.
- In order to extract the maximum amount of science from this dataset, we need to:
  - Think about what else can be done with this dataset.
  - Understand how and how well it can be used to calibrate the detector.
  - Figure out what additional measurements we might need to make now to maximally leverage this dataset for these purposes.

### HST Precursor Survey.

- With HST imaging of (a subset of?) the WFIRST fields in several bluer filters:
  - Can measure metallicities, ages, distances, and foreground extinction for all the bulge and disk stars that will have WFIRST parallaxes and proper motions.
  - Can test proper motion and astrometric microlensing measurements
     by resolving the lenses and sources of future microlensing events.
  - Can identify and map out unusual stellar populations (blue stragglers, etc.)
  - Can identify the locations and colors of all of the stars in the microlensing fields with higher resolution and fidelity than WFIRST or Euclid.